Important attributes of continuous (order > 0) Field and SurfaceField instances:
where conn is the mesh vertex connectivity, econn is the region-local field connectivity.
Base class for finite element fields.
Notes
Field shape information:
Create a new reference mapping.
Compute jacobians, element volumes and base function derivatives for Volume-type geometries (volume mappings), and jacobians, normals and base function derivatives for Surface-type geometries (surface mappings).
Notes
Create a mesh from the field region, optionally including the field extra nodes.
Convert the DOFs corresponding to the field to a dictionary of output data usable by Mesh.write().
Parameters: | dofs : array, shape (n_nod, n_component)
var_name : str
dof_names : tuple of str
key : str, optional
extend : bool
fill_value : float or complex
linearization : Struct or None
|
---|---|
Returns: | out : dict
|
Extend DOFs to the whole domain using the fill_value, or the smallest value in dofs if fill_value is None.
Convenience alias to Field.get_econn(), that is used in some terms.
Get coordinates of the field nodes.
Parameters: | nods : array, optional
|
---|
Get element data dimensions.
Parameters: | integral : Integral instance
integration : ‘volume’, ‘surface’, ‘surface_extra’, ‘point’ or ‘custom’
region_name : str
|
---|---|
Returns: | data_shape : 4 ints
|
Notes
Return indices of DOFs that belong to the given region and group.
Get the evaluate cache for Variable.evaluate_at().
Parameters: | cache : Struct instance, optional
share_geometry : bool
verbose : bool
|
---|---|
Returns: | cache : Struct instance
|
Get quadrature points and weights corresponding to the given key and integral. The key is ‘v’ or ‘s#’, where # is the number of face vertices.
Get the true approximation order depending on the reference element geometry.
For example, for P1 (linear) approximation the true order is 1, while for Q1 (bilinear) approximation in 2D the true order is 2.
Interpolate DOFs into quadrature points.
The quadrature order is given by the field approximation order.
Parameters: | dofs : array
|
---|---|
Returns: | data_qp : array
integral : Integral
|
Linearize the solution for post-processing.
Parameters: | dofs : array, shape (n_nod, n_component)
min_level : int
max_level : int
eps : float
|
---|---|
Returns: | mesh : Mesh instance
vdofs : array
levels : array of ints
|
Methods of fields specific to H1 space.
Finite element field base class over surface (element dimension is one less than space dimension).
Average data given in quadrature points in region elements into region vertices.
u_n = \sum_e (u_{e,avg} * area_e) / \sum_e area_e = \sum_e \int_{area_e} u / \sum area_e
Finite element field base class over volume elements (element dimension equals space dimension).
Average data given in quadrature points in region elements into region vertices.
u_n = \sum_e (u_{e,avg} * volume_e) / \sum_e volume_e = \sum_e \int_{volume_e} u / \sum volume_e
Create output mesh and data for the expression using the adaptive linearizer.
Parameters: | expression : str
name : str
primary_field_name : str
fields : dict
materials : Materials instance
variables : Variables instance
functions : Functions instance, optional
mode : one of ‘eval’, ‘el_avg’, ‘qp’
term_mode : str
extra_args : dict, optional
verbose : bool
kwargs : dict, optional
min_level : int
max_level : int
eps : float
|
---|---|
Returns: | out : dict
|
Compute coordinates of nodes corresponding to poly_space, given mesh coordinates and geom_poly_space.